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Collapse transition and crossover scaling for self-avoiding 
walks on the diamond lattice 

K Kremer, A Baumgartnert and K Binder 
Institut fur Festkorperforschung der Kernforschungsanlage Julich, Postfach 1913, D-5170 
Julich, Federal Republic of Germany 

Received 10 March 1982 

Abstract. A Monte Carlo study of self-avoiding walks on the diamond lattice is presented. 
This model incorporates some of the steric effects and short-range stiffness of real alkanes, 
and for a nearest-neighbour attractive interaction --E is found to have a collapse transition 
at kBO/-E = 2.25*0.05. The behaviour of the chains in the vicinity of this &temperature 
is analysed with the help of recent ‘crossover scaling’ theories. It is shown that for finite 
chain length N there is a rather broad &region where the chains’ behaviour is quasi-ideal. 
The width of this region wo behaves as weCC N-’”, consistent with the blob picture. The 
peak of the specific heat occurs at the boundary between the @-region and the region of 
collapsed chains. We also give rough estimates for the scaling functions describing the 
crossovers of the end-to-end distance and structure factor of the chains. 

1. Introduction 

There has been great interest in the statistics of polymer chains in the presence of 
intramolecular forces (see e.g. the review by de Gennes (1979)). The intermolecular 
forces consist of a (hard core) repulsion of the monomers of the chain at short distances, 
and an attractive interaction of longer range. At the 8- temperature both contributions 
effectively cancel each other, and the chains behave essentially as ideal random walks 
(Flory 1967, 1969). Below this temperature the chain collapses in a condensed state. 
Although there is some experimental evidence for this behaviour (Cuniberti and 
Bianchi 1974, Mazur and McIntyre 1975, Nierlich et a1 1978, Swislov et al 1980, 
Perzynski et al 1982), it is rather difficult to obtain complete and fully conclusive 
results because one is restricted to solutions of extremely dilute polymer concentration. 
Thus many predictions of the numerous analytical theories (Edwards 1965, 1970, 
Domb 1974, Lifshitz et a1 1978, de Gennes 1972, 1975, 1977, 1978, Moore 1977, 
Daoud and Jannink 1976, Duplantier 1980) are as yet untested. 

Thus computer experiments should be an important check of the theory. 
Numerous Monte Carlo studies of corresponding polymer models have already been 
performed, both on lattices (Mazur and McCrackin 1968, McCrackin er a1 1973, Finsy 
et a1 1975, Janssens and Bellemans 1976, La1 and Spencer 1971, Clark and La1 1977), 
for which exact enumerations were also performed (Fisher and Hiley 1961, Rapaport 
1974, 1977), and also in the continuum (Baumgartner 1980, Webman er a1 1981). 
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But a detailed numerical analysis of the crossover of the various quantities as one 
passes the 6-region, in the light of the theories mentioned above, has not yet been 
performed. This is the aim of the present paper. 

Of course, the analytical theories concern the asymptotic properties of very long 
chains (N  -* a), while numerical studies are performed for rather small N. Hence 
these asymptotic properties are only accessible from extrapolations, which are some- 
times uncertain or even impossible. On the other hand, there is interest also in 
properties of rather short real polymer chains, particularly for alkanes 
(CH3(CH2),CH3, with 10 d n d lo2). There the angles between subsequent C-C bonds 
are those of a tetrahedral structure (at room temperature deviations from these angles 
are less then 3", see e.g. La1 and Spencer (1971)). Therefore as a model which 
reproduces some features of these local polymer structures, we consider chains on the 
diamond lattice, which has such tetrahedral angles. The repulsive part of the interac- 
tion is modelled as usual by choosing self -avoiding walks (SAW), the attractive part 
by a nearest-neighbour energy, - E .  In the following two sections this model is 
explained in more detail, as well as the various Monte Carlo procedures used. In § 4 
the numerical results are presented and compared with recent theoretical and experi- 
mental work, while 0 5 contains our conclusions. 

2. Description of the model 

Our model of a polymer consists of N bonds of fixed lengths I, thus connecting N + 1 
monomeric units, on a diamond lattice which has the coordination number 4 = 4. For 
understanding the Monte Carlo process it is necessary to consider briefly the geometry 
of this lattice (for more details see GCny and Monnerie (1979), Kremer (1982)). We 
describe the lattice by two FCC sublattices, their origins being shifted by the vector 
(1, 1, 1). The unit cell then has the volume 4 ~ 4 x 4 .  Each chain is then built up as 
a sequence of points taken alternately from the two sublattices, figure l (a) .  The 
monomers of a chain are hence connected alternatingly by primed or unprimed bond 
vectors defined by 

a = ( 1 9 1 ,  11, b = (1, -1, -l), c = (-1, 1, -l), d = (-1, -1, l), 
(1) 

a'= -a b'=-b,  c ' =  -c d ' z - d .  

For numerical calculatiocs it is useful to choose only even numbers of such bonds, 
each bond of length 1 = J3. 

We test our Monte Carlo methods by considering also non-reversal random walks 
(NRRW) rather than SAWS, since for the NRRW exact calculations exist for arbitrary N 
(Domb and Fisher 1958). The NRRW, for which direct reversals such as ca'ab' are 
forbidden, is a random walk with 4 = 3. 

In our model with nearest-neighbour interactions, temperature comes into play 
by the Boltzmann factor exp ( n E / T ) ,  where n, is the number of nearest-neighbour 
contacts (omitting the trivial ones along the chain and setting c / k B =  1). Of course, 
this is only a rather qualitative description of the interactions, mediated by the solvent 
in a real polymer solution (Flory 1967, 1969), but it has the essential feature of 
competition between short-range repulsion (due to the SAW condition) and longer- 
range attraction. Apart from E ,  there is no energy distinguishing trans and gauche 
bonds as done e.g. by La1 and Spencer (1971) and Clark and La1 (1977). Hence in 
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Figure 1. ( a )  Diamond lattice with a chain starting at (0, 0,O) and ending at (0,4,4). ( b )  
Three-bond motion of a chain on the diamond lattice. ( c )  Four-bond motion of a chain 
on the diamond lattice. 

our case the steric properties and stiffness of the chains result from the non-uniformity 
of the lattice together with the SAW condition only. 

3. Discussion of the Monte Carlo methods used 

Depending on the temperature regime and the chain lengths, we either use simple 
sampling (ss) or importance sampling (Binder 1979) methods, using either ‘reptation’ 
or ‘three-four bond motions’, for importance sampling. 

In the ss method one has to stop the walk and start a completely new chain as 
soon as the SAW condition is violated, in order to do an unbiased sampling (for more 
details see Kremer et a1 (1981), Kremer (1982)). Thus one can calculate a broad range 
of chain lengths N in one run. One samples the distribution function &(ne) of the 
number of nearest-neighbour contacts. Temperature-dependent averages are then 
obtained afterwards by the Boltzmann weighting factors exp(n./ T ) .  Of course, for 
low temperatures where the main contribution comes from large n,, i.e. the ‘wing’ of 
the distribution PN (ne), the lattice must be sampled extremely accurately to obtain 
meaningful estimates. Thus, for N = 100 up to 2 x lo6 configurations were performed. 
The accuracy is also checked by performing some ‘dynamic’ importance sampling 
runs for the same parameters as the ss runs. 

Part of our work, using importance sampling, was done using the ‘reptation’ method 
(Wall and Mandel 1971; see also Webman et a1 1980, Kremer et a1 1981, Kremer 
1981). This method turned out to be useful at high temperatures and N < 100. 

Therefore we introduce another dynamical Monte Carlo method based on internal 
motions of the chain. A similar approach was taken by GBny and Monnerie (1979) 
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in their study of relaxations inside NRRWS with certain steric energies, but their method 
involves a bias. Using their original method therefore yields unsatisfactory results in 
our case (Kremer 1982). Thus it is necessary to describe our approach in more detail. 

One needs to move at least three bonds for simple internal motions. The only 
possible three-bond motion (figure l ( b ) )  is an interchange of bond vectors, 

ab’cd‘a + ad’cb’a. (2) 

No new bond vector is created in such a motion; new bond vectors can only diffuse 
into the chain from ‘freely rotating’ endbonds, where this conservation law is violated. 
Also the chain length N must be even: otherwise both endbonds would belong to 
the same set (e.g. the unprimed one), and rotating ends could only create new bonds 
in this set. It turns out that also for N even this diffusion of bond vectors is very 
slow, since SAW conditions must be obeyed; thus three-bond motion alone would be 
insufficient to reach thermal equilibrium during reasonable simulation times. There- 
fore other motions involving more bonds must also be included. The only four-bond 
motion which cannot be built up by a sequence of three-bond motions is (GCny and 
Monnerie 1979) of the type 

b’ab’ca’c + b’db’cd’c. (3) 

This motion (figure l ( c ) )  creates two new bond vectors inside the chain. One can 
show (Kremer 1982) that this four-bond rotation can never intersect with any other 
bonds of the same chain (or other chains, respectively) at the lattice, if the SAW 

condition is fulfilled. Contrary to chains in the continuum (Baumgartner 1981), 
possible effects due to chain entanglement are hence automatically taken into account, 
and need not be added by an extra restriction as in the continuum case. Since there 
are two inner bonds in the sequence equation (3), two kinds of four-bond motion 
exist. We then combine the three types of motion as follows. First, by a random 
number a bond is selected. If it is an outer bond, a random number is chosen to 
decide to which of the three other possible orientations on the lattice it is attempted 
to rotate. If it is an  inner bond, a random number is chosen to select randomly one 
of the three types of motion. Then one asks for the steric or SAW possibility of the 
desired motion. 

For NRRWS it is easy to show that the condition of detailed balance is then obeyed 
(Kremer 1982). Since for chains of up to five bonds the SAW condition is then 
automatically fulfilled, detailed balance is fulfilled for SAWS also. We have then 
checked our programs by computing the end-to-end distance 

R& = ((ri -r,v+i)’), (4) 

where r, labels the position of the ith monomer along the chain, and by comparing it 
with exactly known results for E = 0. For NRRWS, an exact formula of Domb and 
Fisher (1958) is available for arbitrary N, while for SAWS, exact countings of Wall 
and Hioe (1970) extend up to N = 20. We get excellent agreement with these results. 
Defining one time-step of the simulation as N attempted motions, we define the 
autocorrelation function of ( R k )  as 
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which yields the relaxation time ?N, 

CO 

TN = lo AN(t)  dt. 

As desired, Rouse dynamics applies for the chosen motions, i.e. (see Verdier 1966, 
Hilhorst and Deutch 1975, Lax and Brender 1977) 

T~ cc N ~ .  (7) 

With this method, chains are simulated up to N = 200 for temperatures between 
T = CO (i.e. ordinary SAWS) and T = 1 (€/kg E 1). Configurations were stored after 
each (1 - 5)N2 steps, the precise number depending on the acceptance rate of the 
motions, in order to have statistically independent observations (Binder 1979), and 
then averages of all desired quantities taken. The random number generator R250 
of Kirkpatrick and Stoll(l981) was used throughout. 

4. Numerical results and their theoretical interpretation 

4.1. End-to-end distance, gyration radius, density and structure factor 

We are most interested in the region around the &temperature here. There the chains 
should show a quasi-ideal behaviour due to an effective cancellation of the repulsive 
and attractive parts of the interaction. The first definition of the &temperature 
considers the expansion of the free energy in terms of the density, and defines 8 as 
the ‘Boyle temperature’ where the second virial coefficient vanishes (Flory 1967, 
Moore 1977, de Gennes 1975). In the second definition, one requires that both (RL) 
and the radius of gyration 

behave asymptotically as a random coil. Since the 6-point can be interpreted as a 
tricritical point (de Gennes 1977, 1978), 

(R&)oC(R&XN2”~,  vt = 2, N + m ,  T = e. (9) 1 

For T > 8, the chain should still exhibit SAW behaviour, while for T < t9 it collapses 
to a condensed state, 

v 0.59, T > e ,  
T < e ,  U = 5, 

N+CO. (10) 1 ( R  &)a (RL)cc N2”, 

Of course, these laws hold asymptotically for N + c o .  For finite N, there occurs a 
smooth crossover between these various laws, and the quasi-ideal behaviour of 
equation (9) is seen in a region of temperatures around T = 8 ;  the width of this region 
depends on N. 

This behaviour is established rather clearly from our numerical data (figure 2). 
The flat regions of (R&)/ lZN and (RL)/12N define the 8 region, and extrapolating 
towards N + CO we estimate from figure 2 

e = 2.25 * 0.10. (11) 
Similar bo other results for chains on lattices (Curro and Schafer 1980, Clark and La1 
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1 i o )  
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Figure 2. Log-log plots of ( a )  (RK)/ l ’N,  ( b )  ( R ; ) / / ’ N  and ( c )  normalised density pN”’ 
against N .  Data are obtained by SS methods, with still lo6 realisations for N = 100; at 
N = 80, T = 2 a result of dynamical three-four bond motions, where 2 X lo4 observations 
were averaged, is included. The straight line fitting the data at T = w  has the slope 
expected from v = 0.59. 

1977), short chains always have a tendency to be SAWS even for T < 6. This is a sort 
of ‘chain stiffness’ induced by the short-range NRRW condition. We also calculate the 
density p, 

Similar to the behaviour of (Rk)/N,  the quantity PN’’~ becomes flat inside the 
6-region. While for T < 8 one expects p ( N  + a) + constant, one still finds pronounced 
N-dependence of p down to T = 1.5 for the chain lengths studied, and also the 
asymptotic laws, equation (lo), are not yet valid. This implies that the crossover 
region is rather broad. These results are qualitatively similar to previous work on 
chains in the continuum (Baumgartner 1980), but there a detailed study of the &region 
has not been performed. 

P =”a. (12) 

We also obtain the structure factor 
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in its spherical average 

In the spherical average, we get rid of the effects due to the orientation of lattice 
axes, which are artificial if one wishes to consider an ensemble of chains in a dilute 
solution, where no preferred axes exist. According to Debye (1947) and Farnoux et 
al (1978), we have 

S ( k  ) CC k -”“/ N, (27r)z/(RL)<< kZ<< (27r)’/12, ( 1 4 ~ )  

S ( k )  = 1/N, (27r)’/Iz<< k Z .  (14b) 
Excellent agreement with equation (14) is noted at infinite temperature (figure 3). In 
the &region vt = f, therefore k z S ( k )  should approach a constant in the region where 
equation (14a) is valid. Figure 4 shows that only for T = 2.3 is there an appreciable 
region of k where k 2 S ( k )  is constant, and hence 8=2.3,  consistent with equation 
(11). Varying N at fixed T, one expects that S ( k )  is a function of the scaled variable 
q = kN” only (see e.g. Baumgartner and Binder 1979). This type of scaling is verified 
for two temperatures in figure 5 .  The desired slope (q-’) is seen clearly for tem- 
peratures throughout the &region. 

4.2. Crossover scaling analysis 

We now consider the scaling of (R;) and S ( k )  as the temperature distance r =  
1(T - 6)/f3l from the &temperature is varied, to study the theoretical predictions of 

Symbol 1 N I v I Method 

t 
0.001 I I t I l l l l l  1 I 

0 01 0.1 1 .o 10.0 
k 

Figure 3. Log-log plot of S ( k )  against k. Data from both simple sampling (ss) and 
reptation dynamics (REP) are shown. 
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Y 
Symbol 1 7 

+ ~ 2 0  
A 1 2 . 2  

0 1  0.2 0 3 1.0 h 

Figure 4. Log-log plot of k 2 S ( k )  against k for N = 100. Data are averaged over 250 000 
chains generated by the ss method. 

Symboi 1 + 0 

N 1 60 80 100 1LO I 

q=kN” 

Figure 5. Log-log plot of S ( k )  against scaling variable 4 = kN”‘, vt = 4. Data for N s 100 
are due to ss, data for N = 140 due to the reptation method. 

Daoud and Jannink (1976). For (RL) the corresponding crossover scaling description 
reads 

( R ; p 2  of N”Y*(NT *’VI), (15) 
where the tricritical crossover-exponent pt = (Fisher 1974), and the scaling functions 
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+ 
e 

A 
0 

0 

V 

5 1.8 
3 1, In NT “V A N  rv 

f d x )  must have the following behaviour: 

2 3  

2 L  

2.45 

2 5  
2.65 
3 0  

x y - %  X+oO 

constant x + O ’  
T > 6, f+(x 1 = 

x+m x1/3-v, 

T < 6 .  
f-“) = constant x + 0 7  

We have checked equation (16a) only, since the ss data for T < 6 and large N have 
rather large statistical uncertainties. From figure 6(a) rather distinct and systematic 
deviations from the expected scaling form are apparent. But one must note that 
equation (15) should hold only asymptotically in the limit T + 0, N + a, N T ” ~ ~  finite, 
while at not so small values of T and 1/N there are correction terms to the asymptotic 
form. In fact, the variable T in figure 6 becomes as large as about 0.3; hence part of 
the correction terms can be accounted for if we allow for a more general dependence 
on T than just by the factor T ~ / ~ ~  = T . This fact is illustrated in figure 6(b), where the 
T dependence is assumed of a similar form, T ~ / ~ ~ ~ ,  but Q,S is chosen to fit the data 
reasonably well to a single curve, which occurs for qeff = 2.5 for data in the present 
temperature regime. Of course, in principle, qeff must thus depend on the range of 
temperatures to be fitted, and qeff(7) + qt = $ as T + 0. Since on short length scales 
there is clearly some stiffness of the chains at all temperatures, corrections due to the 
finiteness of N also occur, and hence one must expect still some systematic errors in 
the scaling function f +  apparent from figure 6@). But both figures 6(a) and 6(6) 
suggest that in the limit T + 0, N + a, a scaling function with the expected behaviour, 
equation (16a), may indeed be appropriate. Since equations (15), (16) can be derived 
from a ‘blob picture’ (de Gennes 1978, 1979), our results imply that there is no 
contradiction with the latter. Curro and Schafer (1980) have reached a different 

2 

N =70.80,90,100 
8.2 25 

Symbol I T 

Figure 6. Log-log plot of the expansion factor ( R 2 ) / N  against the scaling variable N T ” ~  
with (a) 9 = 1/2 and ( b )  9eff= 2.5 for -9 = 2.25. 
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conclusion from data similar to those shown in figure 2; we feel that their data also 
reflect the stiffness of the chains at short distances, and do not exclude an interpretation 
such as done here in figure 6 .  In fact, for the related problem of crossover between 
self-avoiding walks and unrestricted random walks in the continuum (Kremer er a1 
1981), there is no stiffness of chains at short distances, and the expected scaling 
behaviour, equation (15), has been seen rather clearly. In this case one also has good 
agreement with the expected theoretical exponent rpt = i. 

A similar analysis applies to the structure factor as well, which must depend on 
the two scaled variables NUtk, NT”? 

S(k)  (N”tk)-l’uth*(NT1’at, kN”I). (17) 

Since equation (14a) implies that for kNVf >> 1 the only N-dependence of S ( k )  is given 
by the (l/N) prefactor, h&, y )  must be a function of xy-””‘ only for large N, 

S (k ) cc (Nk ’ ’ h, (T ’ k - ’ ut) .  (18) 

The scaling function h,  behaves as 

constant, Z + O ,  

, z + w ,  
where U = 0.59 for T >  8, and hence h+(z + 0 0 ) c c z - ~ ~ ~ ~ ,  while U = 4 for T <8, and 
hence h-(z + o o ) o c z ’ / ~ .  

This behaviour, of course, can be derived by directly appealing to the ‘blob picture’ 
of de Gennes (1978, 1979). There the chain is thought to consist of ‘blobs’, i.e. 
subchains, containing Nbx T-’”~ units, each of which basically behaves like an ideal 
random walk. Hence, one should have, from equation (14a), using (RLB)E 12NB, 

(20a 1 

(20b)  

Measuring lengths in such units that (1/2.rr)* = 1, the ideal behaviour, equation (20a) ,  
is observed for the following regime of the scaling variable y = kN”? 

NS (k ) cc k - *  ’ 
NS( k ) cc k -’ ’ I’, 

I2/(27r)‘<< k P 2  << I2Nb/(2.rr)’, 

~’NB/(~?T)’<< k - 2  << (R&)/(2x)’. 
while 

N;’”, << (kN3 )-’ << 1, or T 2 Y t / m t  << (kllvtT’l‘@t 1 9  2 w t < <  1 t21a)  

while the non-ideal behaviour, equation (20b), is observed for (remember (RL)”2 cc 
N;;f WINS)”) 

1<< (kN3)-’<< (N/NB)’”, or I<< (k-1’yt71’mf ) 2“1<<N2u~Y’“t. (216) 

Therefore the crossover from ideal behaviour in the &regime to non-ideal behaviour 
occurs when the scaling variable z = T ”q7k-1’”t becomes large, in agreement with 
equations (18), (19). 

Figure 7(a) shows the corresponding scaling plots for both T > 8 and T < 6. Once 
again systematic deviations from scaling behaviour are apparent, but become less 
pronounced if we use an effective (o, similar to above, instead of rp, = 1 expected for 
7+0. The resulting scaling functions (figure 7(b)) show rather well the behaviour 
concluded from equation (19); although the scaling functions as estimated in figure 
7 may again be somewhat inaccurate, as some systematic errors due to use of too 
large values of variables T ,  1/N, and k may still be present, qualitative consistency 
with the blob picture is demonstrated. 
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0 6  /I T < e =  2 30 
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0 6  rce.2 30 
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0 3  - 
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Figure 7. Scaling plot of the normalised structure factor N k 2 S ( k )  against k-271's for ( a )  
cp =$and ( b )  cpcfi= 3 ( T >  e) or pea= 2.5 ( T <  e), respectively. Here fJ = 2.3 was chosen; 
chain lengths and temperatures used are indicated in the figure. 

4.3. Free energy, entropy and specific heat 

Next the free energy of the chain as well as its temperature derivatives are examined. 
While in dynamic simulations energy and specific heat are obtained in a straightforward 
manner (Binder 1979), it is more difficult to obtain the free energy itself. For example, 
one may estimate free energy differences from 'thermodynamic integration' (e.g. 
Binder 1981). From ss methods one obtains both free energy and entropy directly. 
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Since we are mainly interested in the free energy difference A F  between SAWS 
and NRRWS, for which the entropy is known exactly, we have 

where ZsAw(T, N )  is the partition function of the generated SAWS, and ZNRRW the 
partition function of NRRWS. Constructing NRRWS by the ss method, every attempt 
to generate a chain is successful. The ratio ZsAw(T = CO, N ) / Z N R R W ( T  = CO, N )  is 
hence estimated from the fraction of successful SAWS constructions; denoting the 
fraction of walks with n nearest-neighbour contacts by PN(n) ,  we then have 

~ s A w ( T ,  N)/ZNRRwiT=a,  N ) = C  P N i n )  exP(n&/kBT). ( 2 2 b  
f7 

In figure 8 it is seen that the resulting free energy difference is nearly independent 
of A' in the @-region. Following des Cloizeaux (1976) for N +CO, the free energy can 
be wiitten as 

F s ~ w ( T , N ) / k B T = - N l n q , ~ ( T ) - ( y - l ) l n  N (23) 

where qeff (T)  can be interpreted as effective coordination number of the chain. Since 

FNRRW(T, N)/kBT = -N M q  - I ) ,  q = 4 ,  (24) 

the independence of N in the 0-region implies already that qeff(T = 0) = q - 1 and 
y = yt = 1 in equation (23 ) ,  while for T outside the &region y -;(de Gennes 1979). 

t 
L 

-0 4 

00 0 01 0 02 0 03 0 04 0 05 
? I N  

Figure 8. Simple-sampling data (with 2 X lo6 samples for N = 100) for the free energy 
difference AF/kBT defined in equation (22). 

In order to extract y from the data, we consider the free energy difference, using 
equation (23 ) ,  

[ ( qeff ) N 
-- uN=[AF(N+2, T)-AF(N, T ) ] = 2  In e -'-'+0($)2]. (25) 
kBT 

In equation (25) it is important to use AN = 2 instead of AN = 1, to get rid of the 
typical odd-even oscillations which otherwise occur in non-uniform lattices. For 
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T 
2 6 
2.5 
2.4 
2.3 
2.2 
2.1 
2.0 
1 9 
1.8 

reducing statistical scatter, we furthermore apply a ‘triangle smoothing’ 

(hFN/kBT)rmoothed=(14k~T)-~[8hF~+2(hFN+l+hF~-l)+hF~-2+hFN+ZI. (26) 

Plotting these data in figure 9 against 2/N, the slope of the straight line yields ( y  - 1). 
As expected, the effective exponent deduced in this way is yea = 1 throughout the 
8-region. 

Figure 10 shows an analogous plot for the entropy differences (E(N,  T )  is the 
internal energy of a chain) 

ASN/kBT = [E(N, T)-E(N + 2, T )  - u ( N  -I- 2, T)]/keT. (27) 

Jeff 
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1.052 
1.025 
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Figure 9. Plot of hFN/kBT against 2 / N  for various 
temperatures. The ‘effective exponents’ yeff 
deduced from the slopes are also shown. 
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Figure 10. Plot of hSN/kBT, defined in equation 
(27), against 2/ N for various temperatures. 

Since the entropy should behave similarly to the free energy, equation (23), 

S S A W ( ~ ’ , N ) / ~ B T = - N  lnsedT)-(y- l ) ln  N, (28) 
one should be able to deduce y as well from ASN, equation (28), by a formula analogous 
to equation (25) 

A S N I ~ B T  = 2{ln[(q - l ) / s edT)I - (~  - 1)/N, N + m .  (29) 
For T >> 6, the data indeed are nicely consistent with the expected exponent y = 5- 
1.167, and sea(T=m)=qefl(T= a)= 2.880*0.002, in excellent agreement with 
earlier investigations of this lattice (Watts 1975). But as T is lowered, one finds that 
yea in this plot is monotonously increasing, and no evidence for yea = 1 in the 6-region 
is seen. We feel, however, that the behaviour seen in figure 10 is due to the rapid 
variation of sea(T) as one crosses the @-region: for T + 0 ,  the chain configurations 
are some sort of ‘Hamilton walks’ (Gujrati 1980), with ‘holes’ whose concentration 
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is of order exp(-l&/kBT), where 1 is the number of bonds by which the energy is 
changed relative to its ground state value by each of these defects. Clearly, the entropy 
in the collapsed state well below 8 will be much smaller than above 8, while the free 
energy is much less rapidly varying: the loss in entropy is largely compensated for by 
the gain in internal energy when entering the collapsed region. While seR( T e 8) is 
hence rather small, one still observes a fairly large entropy for short chains, because 
there is much entropy left due to the surface configurations of a short chain forming 
a collapsed coil. As a consequence, one has to proceed to very large N to see the 
asymptotic behaviour where equations (28), (29) are valid. 

We now turn to the specific heat. Since renormalisation group arguments imply 
for very large chains near the &temperature (de Gennes 1978, Duplantier 1980) 

(30) 

one expects an (albeit very weak) singularity in the specific heat, which is the second 
derivative of F with respect to temperature, and can be obtained from both ss and 
‘dynamic’ Monte Carlo methods by considering energy fluctuations 

3 F(N, T ) / k B T  OC NT211nlTlIp, p =E, 

C ( T , N )  1 a E ( T , N )  1 
- N T 2  ((E2> - (E)’) EN N a T  E 

or 

(3 16) 

Figure 11 shows that the specific heat peak occurs at temperatures T distinctly 
below 8 for the chain lengths available, and C is completely flat and monotonously 
decreasing at temperatures near 8. As N increases, the position 8, of the maximum 
moves rather regularly towards 6 (see figure 13 below), but the behaviour of C,,, 
with N is rather irregular. This already occurs for very small N, where exact enumer- 
ations (Kennedy 1978) are available, and hence we feel that the irregular behaviour 
for larger N is a systematic effect, and not only due to the statistical inaccuracy of 
our data. To establish the asymptotic behaviour C m a x / N ~  a Ilnplr, which is expected 
from equation (28) assuming that the divergence of C is rounded off for scaling 
variables NT’ of order unity, one clearly would have to study much larger N. Thus 
we cannot distinguish equation (28) from the somewhat different prediction p = 1 due 
to Moore (1977). The unimportance of the logarithmic term in the free energy, for 
the regions of N,T  available to us, is also a justification to neglect logarithmic 
corrections in our crossover scaling analysis of the data on S ( k )  and (R:). 

Another argument to show that very large N are required before one can expect 
to see the asymptotic behaviour of C(N,  T) is due to a consideration of the probability 
distribution P N ( ~ )  to have n nearest-neighbour contacts in a SAW of length N, since 
due to equation (22) C is closely related to that function. Now figure 12 shows that 
the structure of P N ( n )  is qualitatively different for small N and for large N : P N ( n )  
decreases monotonically with n for small N, while for larger N (N - 70) a well defined 
maximum develops. 

Nevertheless the specific heat is valuable to establish how the width of the @-region 
varies with N. Figure 13 shows that the position 8, of the specific heat maximum 
varies very regularly with N,  in contrast to the height C,, itself, and satisfies a relation 
(8-8,)aNN-”’. Since the density increases rapidly at 8, (figure 11(6)), 6, is some 
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Figure 11. ( a )  Specific heat plotted against temperature for several chain lengths N. For 
N < 20 exact enumerations were used (Kennedy 1978), other data are based on the SS 
method, using equation (29a). For N = 70 also the differentiation was performed (full 
symbols). Bc denotes the position of the specific heat maximum, the height C,, of this 
maximum being given in the insert. The dots there are based on dynamic Monte Carlo 
simulations using the reptation method and equation (296). (6) Density p plotted against 
temperatures for various N. Temperature of maximal slope, e,, is given in (a) .  

effective smeared-out collapse transition temperature for finite chains. The tem- 
perature 8’ where the free energy of a chain equals that of a NRRW also varies linearly 
with l/&, and although for the range of N-values accessible here the estimates for 
8 are very different from each other, the two methods of defining an effective 
@-temperature coincide nicely in the limit N + 00, and yield 8 = 2.25, in satisfying 
agreement with our analysis of (Rfy) and S ( k ) .  

The difference 8; - & in figure 13 must be of the same order of magnitude as the 
width A8 of the &region, in which quasi-ideal behaviour of chains is observed, and 
hence figure 13 implies 

he oc N-’’*. (32) 
This result is again in excellent agreement with the blob picture (de Gennes 1978) 
and renormalisation group arguments (Duplantier 1980), apart from logarithmic 
correction factors. The behaviour found here also agrees with recent experiments 
(Perzynski er a1 1982). 

In figure 13 we have also included the line of critical points TJN) obtained from 
Flory-Huggins theory (Flory 1967), which extrapolates to = 2, and the 
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Figure 12. (a)  Normalised distribution PN(~) (with E;,PN(n) = 1) plotted against number 
n of nearest-neighbour contacts, for SAW at T=co (see equation (22b)) .  (b)  Log-log 
plot of P N ( n )  against the fraction x of contacts, to show the formula PN(n)x 
exp(-x” constant) expected to hold for large enough x (Baumgartner 1982). Preliminary 
estimates for the exponent a are included. 

line of ‘Boyle temperatures’ &(N) where the second virial coefficient b(N, 7’) vanishes. 
Following Baumgartner (1980) we compute a virial coefficient in terms of an average 
over simple random walks ( ),,, 

N 

b ( ~ ,  T) = ( N  + I)-’ 1 ([exp(-Uij/kT) - 1 1 ) ~ ~  (33) 
i J = l  
j>i 

where U = co if the SAW condition is violated, while otherwise U, = E for a nearest- 
neighbour contact. As expected, for instance, from renormalisation group arguments 
(de Gennes 1978), the limiting value of 8B(N + a), which may be interpreted as an 
‘unrenormalised’ &temperature, is different from the actual 8- temperature. The same 
conclusion was also reached by Finsy et a1 (1975) for a virial coefficient defined from 
two-chain contacts (Janssens and Bellemans 1976, McKenzie and Domb 1967). 

Finally we return to the behaviour of the density at low enough temperatures 
where our chain lengths suffice to study not only the &region but also the collapsed 
region. At these temperatures, neither ss nor reptation methods suffice, but the 
three-four bond motion technique still gives satisfactory results. Figure 14 shows that 
the density first decreases (these chain lengths correspond to chains still within the 
&region), then reaches a minimum and afterwards increases again. If one assumes 
a separation of the density in bulk and surface terms, p ( N ,  T) = p(c-0, T) - P ~ ( T ) N - ” ~ ,  
to hold in this region of N already, one would obtain an estimate for the bulk density 
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Figure 13. Various estimates for ‘effective’ &temperatures for chains of finite length 
plotted against l/&. The lowest curve is composed of data of various methods; the 
‘dynamic’ method is reptation for the two shorter chains, and three-four bond motion for 
the longer one. The dotted line gives the results for the Flory-Huggins theory. For further 
explanations cf text. 
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Figure 14. (a) Density p plotted against chain length N at T =  1.1. All data are due to 
dynamic three-four bond motion simulations, averaging over 5 x 104N2 attempted motions 
per chain. (b) Extrapolation of density against N-”3, to the expected ground state density 
pa= 1.13 (Kremer 1982), for the same data as in (a). 

p(m, T) indistinguishable from the ground-state density p(m, 0), which is readily 
estimated for any ‘Hamilton walk’ (Kremer 1982). Since the temperature shown in 
figure 14 is about $3, the decrease of density from its saturation value may indeed be 
very small. Unfortunately, our data are insufficient to examine the behaviour of 
p(m, T) for T close to 8 :  one would need N much larger than N,,(T), where N,,(T) 
is the value of N for which the specific-heat maximum occurs at e,= T (figure 13), 
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in order to enter the collapsed region. Figure 14 also illustrates that estimating p(00, T )  
from a region where the p against N curve is flat would be extremely misleading: for 
N = N,,,(T) a minimum in the p against N curve is reached, which should not be 
mistaken for an approach towards the bulk density of the collapsed coil. 

5. Conclusions 

This paper contains a rather extensive study of the behaviour of linear polymer chains 
on diamond lattices in the region around the &point, which we finally estimate as 
e k e / &  = 2.25 zt0.05, for an energy --E of nearest-neighbour contacts on the lattice, 
and no other interactions (apart from the SAW restriction). This model on the one 
hand incorporates some of the steric effects occurring in real polymer chains such as 
alkanes, and on the other hand is simple enough to allow efficient Monte Carlo 
methods to be employed. Our numerical results agree with previous work on this 
lattice, as far as previous investigations went, and also are in qualitative agreement 
with previous studies for the &region of other models. But in our study, for the first 
time, data sufficient for a detailed comparison with crossover scaling concepts such 
as the blob picture have been obtained. Using effective crossover exponents to account 
for corrections to scaling, rough estimates for the crossover scaling function of the 
end-to-end distance and the structure factor were obtained. While the chains exhibit 
considerable stiffness on short length scales, one finds ( R k ) a ( S k ) a N  for T = 8 for 
large N, and hence the prefactor of this relation is very different from a simple random 
walk on this lattice. Similarly, the temperatures where the second virial coefficient 
vanishes do not extrapolate towards the &temperature. At the &point, only the 
long-range SAW interactions and the attractive interactions cancel, but the short-range 
SAW condition, i.e. the NRRW condition, is not cancelled. This is consistent, of course, 
with observing stiffness on short length scales, and with the finding that for T + 8 the 
free energy becomes identical to that of NRRWS. 

We have also estimated the width of the &region and found that it vanishes with 
an N-l’* law as N + 00, consistent with recent theoretical predictions and experiment. 
In the regime T < e, we predict a non-monotonic approach of the density towards 
its bulk value. It would be interesting if corresponding experiments on real alkane 
chains could be performed to see this behaviour also, as well as check our various 
other predictions. 
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